1,632 research outputs found

    The Raman Fingerprint of Graphene

    Full text link
    Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provided the possibility to study experimentally its electronic and phonon properties. Here we show that graphene's electronic structure is uniquely captured in its Raman spectrum that clearly evolves with increasing number of layers. Raman fingerprints for single-, bi- and few-layer graphene reflect changes in the electronic structure and electron-phonon interactions and allow unambiguous, high-throughput, non-destructive identification of graphene layers, which is critically lacking in this emerging research area

    Graphene-based photovoltaic cells for near-field thermal energy conversion

    Get PDF
    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.Comment: 5 pages, 4 figure

    Strong plasmonic enhancement of photovoltage in graphene.

    Get PDF
    From the wide spectrum of potential applications of graphene, ranging from transistors and chemical sensors to nanoelectromechanical devices and composites, the field of photonics and optoelectronics is believed to be one of the most promising. Indeed, graphene's suitability for high-speed photodetection was demonstrated in an optical communication link operating at 10 Gbit s(-1). However, the low responsivity of graphene-based photodetectors compared with traditional III-V-based ones is a potential drawback. Here we show that, by combining graphene with plasmonic nanostructures, the efficiency of graphene-based photodetectors can be increased by up to 20 times, because of efficient field concentration in the area of a p-n junction. Additionally, wavelength and polarization selectivity can be achieved by employing nanostructures of different geometries

    Single donor ionization energies in a nanoscale CMOS channel

    Full text link
    One consequence of the continued downwards scaling of transistors is the reliance on only a few discrete atoms to dope the channel, and random fluctuations of the number of these dopants is already a major issue in the microelectonics industry. While single-dopant signatures have been observed at low temperature, studying the impact of only one dopant up to room temperature requires extremely small lengths. Here, we show that a single arsenic dopant dramatically affects the off-state behavior of an advanced microelectronics field effect transistor (FET) at room temperature. Furthermore, the ionization energy of this dopant should be profoundly modified by the close proximity of materials with a different dielectric constant than the host semiconductor. We measure a strong enhancement, from 54meV to 108meV, of the ionization energy of an arsenic atom located near the buried oxide. This enhancement is responsible for the large current below threshold at room temperature and therefore explains the large variability in these ultra-scaled transistors. The results also suggest a path to incorporating quantum functionalities into silicon CMOS devices through manipulation of single donor orbitals

    Band dispersion in the deep 1s core level of graphene

    Full text link
    Chemical bonding in molecules and solids arises from the overlap of valence electron wave functions, forming extended molecular orbitals and dispersing Bloch states, respectively. Core electrons with high binding energies, on the other hand, are localized to their respective atoms and their wave functions do not overlap significantly. Here we report the observation of band formation and considerable dispersion (up to 60 meV) in the 1s1s core level of the carbon atoms forming graphene, despite the high C 1s1s binding energy of \approx 284 eV. Due to a Young's double slit-like interference effect, a situation arises in which only the bonding or only the anti-bonding states is observed for a given photoemission geometry.Comment: 12 pages, 3 figures, including supplementary materia

    Detecting topological currents in graphene superlattices

    Get PDF
    This is the author accepted manuscript. The final version is available from AAAS via the DOI in this record.Topological materials may exhibit Hall-like currents flowing transversely to the applied electric field even in the absence of a magnetic field. In graphene superlattices, which have broken inversion symmetry, topological currents originating from graphene's two valleys are predicted to flow in opposite directions and combine to produce long-range charge neutral flow. We observed this effect as a nonlocal voltage at zero magnetic field in a narrow energy range near Dirac points at distances as large as several micrometers away from the nominal current path. Locally, topological currents are comparable in strength with the applied current, indicating large valley-Hall angles. The long-range character of topological currents and their transistor-like control by means of gate voltage can be exploited for information processing based on valley degrees of freedom.This work was supported by the European Research Council, the Royal Society, the National Science Foundation (STC Center for Integrated Quantum Materials, grant DMR‐1231319), Engineering & Physical Research Council (UK), the Office of Naval Research and the Air Force Office of Scientific Research

    Probing the local nature of excitons and plasmons in few-layer MoS₂

    Get PDF
    Excitons and plasmons are the two most fundamental types of collective electronic excitations occurring in solids. Traditionally, they have been studied separately using bulk techniques that probe their average energetic structure over large spatial regions. However, as the dimensions of materials and devices continue to shrink, it becomes crucial to understand how these excitations depend on local variations in the crystal- and chemical structure on the atomic scale. Here, we use monochromated low-loss scanning-transmission-electron-microscopy electron-energy-loss spectroscopy, providing the best simultaneous energy and spatial resolution achieved to-date to unravel the full set of electronic excitations in few-layer MoS₂ nanosheets over a wide energy range. Using first-principles, many-body calculations we confirm the excitonic nature of the peaks at ~ 2 and ~ 3 eV in the experimental electron-energy-loss spectrum and the plasmonic nature of higher energy-loss peaks. We also rationalise the non-trivial dependence of the electron-energy-loss spectrum on beam and sample geometry such as the number of atomic layers and distance to steps and edges. Moreover, we show that the excitonic features are dominated by the long wavelength (q = 0) components of the probing field, while the plasmonic features are sensitive to a much broader range of q-vectors, indicating a qualitative difference in the spatial character of the two types of collective excitations. Our work provides a template protocol for mapping the local nature of electronic excitations that open new possibilities for studying photo-absorption and energy transfer processes on a nanometer scale

    Giant half-cycle attosecond pulses

    Full text link
    Half-cycle picosecond pulses have been produced from thin photo-conductors, when applying an electric field across the surface and switching on conduction by a short laser pulse. Then the transverse current in the wafer plane emits half-cycle pulses in normal direction, and pulses of 500 fs duration and 1e6 V/m peak electric field have been observed. Here we show that single half-cycle pulses of 50 as duration and up to 1e13 V/m can be produced when irradiating a double foil target by intense few-cycle laser pulses. Focused onto an ultra-thin foil, all electrons are blown out, forming a uniform sheet of relativistic electrons. A second layer, placed at some distance behind, reflects the drive beam, but lets electrons pass straight. Under oblique incidence, beam reflection provides the transverse current, which emits intense half-cycle pulses. Such a pulse may completely ionize even heavier atoms. New types of attosecond pump-probe experiments will become possible.Comment: 5 pages, 4 figures, to be presented at LEI2011-Light at Extreme Intensities and China-Germany Symposium on Laser Acceleratio

    Electronic Properties of Boron and Nitrogen doped graphene: A first principles study

    Full text link
    Effect of doping of graphene either by Boron (B), Nitrogen (N) or co-doped by B and N is studied using density functional theory. Our extensive band structure and density of states calculations indicate that upon doping by N (electron doping), the Dirac point in the graphene band structure shifts below the Fermi level and an energy gap appears at the high symmetric K-point. On the other hand, by B (hole doping), the Dirac point shifts above the Fermi level and a gap appears. Upon co-doping of graphene by B and N, the energy gap between valence and conduction bands appears at Fermi level and the system behaves as narrow gap semiconductor. Obtained results are found to be in well agreement with available experimental findings.Comment: 11 pages, 4 figures, 1 table, submitted to J. Nanopart. Re

    Preparation and characterization of in situ polymerized cyclic butylene terephthalate/graphene nanocomposites

    Get PDF
    Graphene reinforced cyclic butylene terephthalate (CBT) matrix nanocomposites were prepared and characterized by mechanical and thermal methods. These nanocomposites containing different amounts of graphene (up to 5 wt%) were prepared by melt mixing with CBT that was polymerized in situ during a subsequent hot pressing. The nanocomposites and the neat polymerized CBT (pCBT) as reference material were subjected to differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), thermogravimetrical analysis (TGA) and heat conductivity measurements. The dispersion of the grapheme nanoplatelets was characterized by transmission electron microscopy (TEM). It was established that the partly exfoliated graphene worked as nucleating agent for crystallization, acted as very efficient reinforcing agent (the storage modulus at room temperature was increased by 39 and 89% by incorporating 1 and 5 wt.% graphene, respectively). Graphene incorporation markedly enhanced the heat conductivity but did not influence the TGA behaviour due to the not proper exfoliation except the ash content
    corecore